Deep Reinforcement Learning for Mention-Ranking Coreference Models

نویسندگان

  • Kevin Clark
  • Christopher D. Manning
چکیده

Coreference resolution systems are typically trained with heuristic loss functions that require careful tuning. In this paper we instead apply reinforcement learning to directly optimize a neural mention-ranking model for coreference evaluation metrics. We experiment with two approaches: the REINFORCE policy gradient algorithm and a rewardrescaled max-margin objective. We find the latter to be more effective, resulting in significant improvements over the current state-ofthe-art on the English and Chinese portions of the CoNLL 2012 Shared Task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Models for Coreference Resolution

Traditional learning-based coreference resolvers operate by training a mentionpair classifier for determining whether two mentions are coreferent or not. Two independent lines of recent research have attempted to improve these mention-pair classifiers, one by learning a mentionranking model to rank preceding mentions for a given anaphor, and the other by training an entity-mention classifier to...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

Narrowing the Modeling Gap: A Cluster-Ranking Approach to Coreference Resolution

Traditional learning-based coreference resolvers operate by training the mention-pair model for determining whether two mentions are coreferent or not. Though conceptually simple and easy to understand, the mention-pair model is linguistically rather unappealing and lags far behind the heuristic-based coreference models proposed in the pre-statistical NLP era in terms of sophistication. Two ind...

متن کامل

Joint Learning for Event Coreference Resolution

While joint models have been developed for many NLP tasks, the vast majority of event coreference resolvers, including the top-performing resolvers competing in the recent TAC KBP 2016 Event Nugget Detection and Coreference task, are pipelinebased, where the propagation of errors from the trigger detection component to the event coreference component is a major performance limiting factor. To a...

متن کامل

Evaluating Deep Learning Approaches for Character Identification in Multiparty Dialogues

Character identification is an entity linking task that identifies each mention as a certain character in multiparty dialogue where mentions are typically nominals referring to a person and entities maybe speakers themselves or even external characters. Identifying such mentions as real characters requires cross-document entity resolution, which makes this task challenging. This task involves c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016